Multiple host targets of Pseudomonas effector protein HopM1 form a protein complex regulating apoplastic immunity and water homeostasis.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览4
暂无评分
摘要
Bacterial type III effector proteins injected into the host cell play a critical role in mediating bacterial interactions with plant and animal hosts. Notably, some bacterial effectors are reported to target sequence-unrelated host proteins with unknown functional relationships. The effector HopM1 is such an example; it interacts with and/or degrades several HopM1-interacting (MIN) Arabidopsis proteins, including HopM1-interacting protein 2 (MIN2/RAD23), HopM1-interacting protein 7 (MIN7/BIG5), HopM1-interacting protein 10 (MIN10/14-3-3ĸ), and HopM1-interacting protein 13 (MIN13/BIG2). In this study, we purified the MIN7 complex formed and found that it contains MIN7, MIN10, MIN13, as well as a tetratricopeptide repeat protein named HLB1. Mutational analysis showed that, like MIN7, HLB1 is required for pathogen-associated molecular pattern (PAMP)-, effector-, and benzothiadiazole (BTH)-triggered immunity. HLB1 is recruited to the trans-Golgi network (TGN)/early endosome (EE) in a MIN7-dependent manner. Both and mutant leaves contained elevated water content in the leaf apoplast and artificial water infiltration into the leaf apoplast was sufficient to phenocopy immune-suppressing phenotype of HopM1. These results suggest that multiple HopM1-targeted MIN proteins form a protein complex with a dual role in modulating water level and immunity in the apoplast, which provides an explanation for the dual phenotypes of HopM1 during bacterial pathogenesis.
更多
查看译文
关键词
of<i>pseudomonas</i>effector protein hopm1 form,apoplastic immunity,protein complex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要