Development and validation of a reinforcement learning model for ventilation control during emergence from general anesthesia

NPJ digital medicine(2023)

引用 0|浏览1
暂无评分
摘要
Ventilation should be assisted without asynchrony or cardiorespiratory instability during anesthesia emergence until sufficient spontaneous ventilation is recovered. In this multicenter cohort study, we develop and validate a reinforcement learning-based Artificial Intelligence model for Ventilation control during Emergence (AIVE) from general anesthesia. Ventilatory and hemodynamic parameters from 14,306 surgical cases at an academic hospital between 2016 and 2019 are used for training and internal testing of the model. The model’s performance is also evaluated on the external validation cohort, which includes 406 cases from another academic hospital in 2022. The estimated reward of the model’s policy is higher than that of the clinicians’ policy in the internal (0.185, the 95% lower bound for best AIVE policy vs. −0.406, the 95% upper bound for clinicians’ policy) and external validation (0.506, the 95% lower bound for best AIVE policy vs. 0.154, the 95% upper bound for clinicians’ policy). Cardiorespiratory instability is minimized as the clinicians’ ventilation matches the model’s ventilation. Regarding feature importance, airway pressure is the most critical factor for ventilation control. In conclusion, the AIVE model achieves higher estimated rewards with fewer complications than clinicians’ ventilation control policy during anesthesia emergence.
更多
查看译文
关键词
ventilation control,anesthesia,reinforcement learning model,reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要