ncRNAs as biomarkers and therapeutic targets for bronchiectasis.

Epigenomics(2023)

引用 0|浏览14
暂无评分
摘要
EpigenomicsAhead of Print EditorialncRNAs as biomarkers and therapeutic targets for bronchiectasisCatherine M GreeneCatherine M Greene *Author for correspondence: E-mail Address: cmgreene@rcsi.iehttps://orcid.org/0000-0003-2549-2569Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, IrelandSearch for more papers by this authorPublished Online:16 Aug 2023https://doi.org/10.2217/epi-2023-0252AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: biomarkerbronchiectasiscircular RNAdiagnosticlncRNAmicroRNAnoncoding RNAtherapeuticReferences1. Gould GS, Hurst JR, Trofor A et al. Recognising the importance of chronic lung disease: a consensus statement from the Global Alliance for Chronic Diseases (Lung Diseases group). Respir. Res. 24(1), 15–21 (2023).Crossref, Medline, Google Scholar2. Xu JF, Gao YH, Song YL, Qu JM, Guan WJ. Research advances and clinical management of bronchiectasis: chinese perspective. ERJ Open Res. 8(2), 00017–02022 (2022).Crossref, Medline, Google Scholar3. Chalmers JD, Elborn S, Greene CM. Basic, translational and clinical aspects of bronchiectasis in adults. Eur. Respir. Rev. 32(168), 230015–230028 (2023).Crossref, Medline, Google Scholar4. Chalmers JD, Aliberti S, Altenburg J et al. Transforming clinical research and science in bronchiectasis: EMBARC3, a European Respiratory Society clinical research collaboration. Eur. Respir. J. 61(6), 2300769–2300775 (2023).Crossref, Medline, Google Scholar5. Huang Y, Chen CL, Yuan JJ et al. Sputum exosomal microRNAs profiling reveals critical pathways modulated by Pseudomonas aeruginosa colonization in bronchiectasis. Int. J. Chron. Obstruct. Pulmon. Dis. 14, 2563–2573 (2019).Crossref, Medline, CAS, Google Scholar6. Glasgow AMA, De Santi C, Greene CM. Non-coding RNA in cystic fibrosis. Biochem. Soc. Trans. 46(3), 619–630 (2018).Crossref, Medline, CAS, Google Scholar7. Gaul R. Development of an Integrated Device-RNAi Particle Platform for the Treatment of Cystic Fibrosis via Inhalation [ PhD Thesis]. Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland (2022).Google Scholar8. Wang Y, Lyu X, Wu X, Yu L, Hu K. Long non-coding RNA PVT1 a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a. J. Clin. Lab. Anal. 34(8), e23346–e23354 (2020).Crossref, Medline, CAS, Google Scholar9. Ge J, Geng S, Jiang H. Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease. J. Clin. Lab. Anal. 33(2), e22678–e22685 (2019).Crossref, Medline, Google Scholar10. Tang S, Ding Y, Zhou Z, Yang W. Identification and bioinformatic analysis of circRNAs in the plasma of patients with very severe chronic obstructive pulmonary disease. BMC Pulm. Med. 23(1), 211–221 (2023).Crossref, Medline, CAS, Google Scholar11. Miao Y, Wu J, Wu R, Wang E, Wang J. Circ_0040929 serves as promising biomarker and potential target for chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 2079–2092 (2022).Crossref, Medline, Google Scholar12. Chen S, Yao Y, Lu S et al. CircRNA0001859, a new diagnostic and prognostic biomarkers for COPD and AECOPD. BMC Pulm. Med. 20(1), 311–320 (2020).Crossref, Medline, CAS, Google Scholar13. Flume PA, Basavaraj A, Garcia B et al. . Towards development of evidence to inform recommendations for the evaluation and management of bronchiectasis. Respir. Med. 211, 107217–107227 (2023).Crossref, Medline, Google Scholar14. De Santi C, Fernández Fernández E, Gaul R et al. Precise targeting of miRNA sites restores CFTR activity in CF bronchial epithelial cells. Mol. Ther. 28(4), 1190–1199 (2020).Crossref, Medline, Google Scholar15. Oglesby IK, Vencken SF, Agrawal R et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur. Respir. J. 46(5), 1350–1356 (2015).Crossref, Medline, CAS, Google Scholar16. Vencken S, Foged C, Ramsey JM et al. . Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res. 5(2), 00161–02018 (2019).Crossref, Medline, Google Scholar17. Sonneville F, Ruffin M, Coraux C et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat. Commun. 8(1), 710-720 (2017).Crossref, Google Scholar18. Song R, Walentek P, Sponer N et al. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510(7503), 115–120 (2014).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Accepted 24 July 2023 Published online 16 August 2023 Information© 2023 Future Medicine LtdKeywordsbiomarkerbronchiectasiscircular RNAdiagnosticlncRNAmicroRNAnoncoding RNAtherapeuticFinancial & competing interests disclosureThe author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download
更多
查看译文
关键词
biomarkers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要