Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification

Nature communications(2023)

引用 0|浏览27
暂无评分
摘要
The limited signal of long-wavelength near-infrared-II (NIR-II, 900–1880 nm) fluorophores and the strong background caused by the diffused photons make high-contrast fluorescence imaging in vivo with deep tissue disturbed still challenging. Here, we develop NIR-II fluorescent small molecules with aggregation-induced emission properties, high brightness, and maximal emission beyond 1200 nm by enhancing electron-donating ability and reducing the donor-acceptor (D-A) distance, to complement the scarce bright long-wavelength emissive organic dyes. The convincing single-crystal evidence of D-A-D molecular structure reveals the strong inhibition of the π-π stacking with ultralong molecular packing distance exceeding 8 Å. The delicately-designed nanofluorophores with bright fluorescent signals extending to 1900 nm match the background-suppressed imaging window, enabling the signal-to-background ratio of the tissue image to reach over 100 with the tissue thickness of ~4–6 mm. In addition, the intraluminal lesions with strong negatively stained can be identified with almost zero background. This method can provide new avenues for future long-wavelength NIR-II molecular design and biomedical imaging of deep and highly scattering tissues.
更多
查看译文
关键词
molecular packing,ultralong-distance,high-contrast
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要