谷歌浏览器插件
订阅小程序
在清言上使用

A Rational Approach to Antitubercular Drug Design: Molecular Docking, Prediction of ADME Properties and Evaluation of Antitubercular Activity of Novel Isonicotinamide Scaffold.

Recent advances in anti-infective drug discovery(2024)

引用 0|浏览5
暂无评分
摘要
INTRODUCTION:One of the most devastating and leading diseases is Tuberculosis (TB), caused by Mycobacterium tuberculosis. Even though many synthetic drugs are available in the market, to increase the therapeutic efficacy and reduce toxicity. Isoniazid is the primary drug used in the treatment of tuberculosis.METHODS:The main objective of the study is to perform molecular docking studies and synthesize the derivatives of isonicotinamide along with the anti-tubercular activity. The isonicotinamide derivatives (a-j) are prepared using isoniazid, carbon disulphate, methyl cyanide, and benzaldehyde derivatives and characterized by TLC, IR, 1HNMR, and Mass spectroscopy. The enzyme decaprenylphosphoryl-D-ribose oxidase (DprE1) of M. tuberculosis had good binding capacity with all the ligands revealed in molecular docking studies. In-vitro studies indicated that all the ligands showed anti-tuberculosis with strain M. tuberculosis.RESULTS:The analysis was based on the binding energy and minimum inhibitory concentration (MIC). The highest and lowest binding energy is -4.22 Kcal/mol (f) and -8.45 Kcal/mol (d), and the MIC for compound d was found to be 644.22 nM. Among all the ligands, compound 5d has the most cytotoxic effect and lower IC50 values and better bioavailability.CONCLUSION:This investigation helps in the development of better anti-tubercular therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要