Short-Term Power Load Forecasting Based on PSO-Optimized VMD-TCN-Attention Mechanism

Guomin Geng,Yu He,Jing Zhang, Tianyi Qin,Bo Yang

Energies(2023)

引用 2|浏览4
暂无评分
摘要
A new prediction framework is proposed to improve short-term power load forecasting accuracy. The framework is based on particle swarm optimization (PSO)-variational mode decomposition (VMD) combined with a time convolution network (TCN) embedded attention mechanism (Attention). The framework follows a two-step process. In the first step, PSO is applied to optimize the VMD decomposition method. The original electricity load sequence is decomposed, and the fitness function uses sample entropy to describe the complexity of the time series. The decomposed sub-sequences are combined with relevant features, such as meteorological data, to form the input sequence of the prediction model. In the second step, TCN is selected as the prediction model, and it is embedded with an attention mechanism to improve prediction accuracy. The above input sequence is fed to the model to obtain the PSO-VMD-TCN-Attention prediction framework. Load datasets and various prediction models validate the PSO-optimized VMD decomposition method and the TCN-Attention prediction model. Simulation results demonstrate that the PSO-optimized VMD decomposition method enhances the model’s prediction accuracy, and the TCN-Attention prediction model outperforms other prediction models in terms of prediction accuracy and ability.
更多
查看译文
关键词
variational mode decomposition (VMD), time convolution network (TCN), attention mechanism, short-term load forecasting, particle swarm optimization (PSO)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要