Influence of component manipulation on the structural, mechanical, thermophysical and electrical properties of La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ high-entropy ceramics

Ceramics International(2023)

引用 0|浏览2
暂无评分
摘要
A series of high-entropy ceramics (HECs) with compositions of La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ (x = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, the corresponding names being HEC(Zr0·5/Y0.5, Zr0·6/Y0.4, Zr0·7/Y0.3, Zr0·8/Y0.2, Zr0·9/Y0.1, Zr1·0/Y0)) were sintered in air at 1600 °C for 10 h. When x is in the range of 0.5–0.7, a fluorite phase is formed. Then, as x exceeds 0.7, a second pyrochlore-structured phase appears, and its content gradually increases with the increasing x. The grain growth of the samples is inhibited by increasing in the relative Zr content. The grain refinement and the formation of second phase reduce the thermal conductivity and reinforce the mechanical properties of the samples. HEC(Zr0.9/Y0.1) has the lowest thermal conductivity (50–500 °C) and brittleness index, as well as the highest fracture toughness among all samples. In addition, La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ ceramics have excellent thermal stability under Ar atmosphere in 50–1400 °C. The thermal expansion coefficients of the samples marginally change regardless of the variation in x. All samples show higher oxygen barrier property than Y2O3-stabilized ZrO2.
更多
查看译文
关键词
High-entropy ceramics,Fluorite-structured oxides,Thermal conductivity,Mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要