Exploring the Impact of Blend and Graft of Quinoline Derivative in Low-Temperature Curable Polyimides

MACROMOLECULAR RAPID COMMUNICATIONS(2023)

引用 0|浏览0
暂无评分
摘要
The utilization of accelerators has been a common approach to prepare low-temperature curable polyimide (PI). However, the accelerators have gradually fallen out of favor because of their excessive dosages and negative effect on the properties of PI. In this work, a new strategy of introducing accelerators by grafting to eliminate these disadvantages is presented. A novel quinoline derivative named 6-([1,1'-biphenyl]-4-yl)-4-chloroquinoline (NQL) is designed for this purpose, and an ultralow dosage of only 2.5 mol% is sufficient to prepare low-temperature curable PI. The favorable low-temperature curing effect of NQL is attributed to its strong alkalinity (pKa = 18.47) and electron-donating ability. At a curing temperature of 200 degrees C, the PI with 2.5 mol% NQL showed outstanding properties (Young's modulus of 5.73 GPa, elongation of 37.3%, tensile strength of 237 MPa, and coefficient of thermal expansion of 16 ppm K-1). In particular, NQL can even lower the curing temperature to 180 degrees C and the ultralow temperature curable PI film still retains excellent properties. These results demonstrate that introducing low-temperature curable accelerators by partial grafting instead of blending is a promising way to furnish low-temperature curable PI, and provide insights into the preparation of polyimide with high performance in advanced packaging.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要