Dynamic Surface Wrinkles for In Situ Light-Driven Dynamic Gratings

ACS Applied Materials & Interfaces(2022)

引用 3|浏览0
暂无评分
摘要
Dynamic diffraction gratings (DDGs) are considered as one of the most promising technologies for application in smart optical devices because of their in situ dynamic regulation of light propagation on demand; however, it is still a challenge to fabricate dynamic periodic micro/nanostructures due to limited materials and processes. Here, a facile and feasible strategy to construct a near-infrared (NIR) radiation-driven DDG is developed based on a double-sided surface pattern, which is fabricated by dynamic wrinkles and/or soft-imprinted static wrinkles. Poly(dimethylsiloxane) (PDMS) containing carbon nanotubes (CNTs) serves as the substrate, and wrinkles are formed on both sides. The resulting double-sided wrinkle pattern can be used as a DDG to generate various adjustable two-dimensional (2D) diffraction patterns driven by NIR light. Furthermore, with various combinations of wrinkles, we demonstrated a single-sided responsive DDG and a double-sided responsive DDG to realize the evolution of diffraction patterns from 2D to one-dimensional (1D) and 2D to zero-dimensional (0D), respectively. The results provide an alternative for DDGs that will have wide applications in smart display, sensing, and imaging systems.
更多
查看译文
关键词
surface,light-driven
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要