Biopolymer-Based Composite Hydrogels Embedding Small Silver Nanoparticles for Advanced Antimicrobial Applications: Experimental and Theoretical Insights.

Polymers(2023)

引用 1|浏览13
暂无评分
摘要
In this work, we report a two-step methodology for the synthesis of small silver nanoparticles embedded into hydrogels based on chitosan (CS) and hydroxypropyl methylcellulose (HPMC) biopolymers. This method uses -glucose as an external green reducing agent and purified water as a solvent, leading to an eco-friendly, cost-effective, and biocompatible process for the synthesis of silver nanocomposite hydrogels. Their characterization comprises ultraviolet-visible spectroscopy, Fourier-transform infrared spectra, differential scanning calorimetry, scanning electron microscopy with energy-dispersive spectroscopy, and transmission electron microscopy assays. Moreover, the structural stability of the hydrogels was investigated through sequential swelling-deswelling cycles. The nanomaterials showed good mechanical properties in terms of their structural stability and revealed prominent antibacterial properties due to the reduced-size particles that promote their use as new advanced antimicrobial agents, an advantage compared to conventional particles in aqueous suspension that lose stability and effectiveness. Finally, theoretical analyses provided insights into the possible interactions, charge transfer, and stabilization process of nanoclusters mediated by the high-electron-density groups belonging to CS and HPMC, revealing their unique structural properties in the preparation of nano-scaled materials.
更多
查看译文
关键词
antibacterial agents,biopolymers,density functional theory,hydrogels,silver nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要