Cholinergic innervation topography in GBA-associated de novo Parkinson's disease patients

BRAIN(2024)

引用 0|浏览10
暂无评分
摘要
The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand F-18-F-fluoroethoxybenzovesamicol (F-18-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD.The study investigated 123 newly diagnosed, treatment-naive Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and F-18-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient.Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower F-18-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in F-18-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD.De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.
更多
查看译文
关键词
GBA,acetylcholine,Parkinson's disease,PET,cognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要