External magnetic fields enhance capture of magnetic nanoparticles flowing through molded microfluidic channels by ferromagnetic nanostructures

arXiv (Cornell University)(2023)

引用 0|浏览3
暂无评分
摘要
Magnetic nanoparticles (MNPs) have many applications which require MNPs to be captured and immobilized for their manipulation and sensing. For example, MNP sensors based on detecting changes to the ferromagnetic resonances of an antidot nanostructure exhibit better performance when the nanoparticles are captured within the antidot inclusions. This study investigates the influence of microfluidics upon the capture of MNPs by four geometries of antidot array nanostructures hollowed into 30 nm-thick Permalloy films. The nanostructures were exposed to a dispersion of 130 nm MNP clusters which passed through PDMS microfluidic channels with a 400 {\mu}m circular cross-section fabricated from wire molds. With the microfluidic flow of MNPs, the capture efficiency - the ratio between the number of nanoparticles captured inside of the antidot inclusions to the number outside the inclusions - decreased for all four geometries compared to previous results introducing the particles via droplets on the film surface. This indicates that most MNPs were passing over the nanostructures, since there were no significant magnetophoretic forces acting upon the particles. However, when a static magnetic field is applied, the magnetophoretic forces generated by the nanostructure are stronger and the capture efficiencies are significantly higher than those obtained using droplets. In particular, circular antidots demonstrated the highest capture efficiency among the four geometries of almost 83.1% when the magnetic field is parallel to the film plane. In a magnetic field perpendicular to the film, the circle antidots again show the highest capture efficiency of about 77%. These results suggest that the proportion of nanoparticles captured inside antidot inclusions is highest under a parallel magnetic field. Clearly, the geometry of the nanostructure has a strong influence on the capture of MNPs.
更多
查看译文
关键词
magnetic nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要