Advanced inorganic lithium metasilicate binder for high-performance silicon anode.

Journal of colloid and interface science(2023)

引用 0|浏览13
暂无评分
摘要
Silicon (Si) is considered a high-capacity anode material with potential for next-generation lithium-ion batteries. However, the commercial application of Si anode is seriously hindered by huge volume variation (>300%) and limited Li+ diffusion ability. Herein, lithium metasilicate (LS), a novel inorganic binder, was innovatively developed to accommodate these challenges. Favorable compatibility is observed between the LS binder and Si nanoparticles (SiNPs) due to the existence of Si element within the LS skeleton. The interaction of the LS binder and SiNPs leads to a strong adhesion effect, enhancing the cycling stability of Si anode. The Si electrode with the LS binder presented an average discharge capacity of 2123 mAh/g at 0.84 A/g after 100 cycles. Furthermore, the presence of the Li+ transport channel within the LS binder enhances Li+ diffusion ability within Si anode. As a result, the average discharge capacity reaches 663 mAh/g at 8.4 A/g. This work thus explored new inorganic binder design approaches for Si anode, contributing to the advancement of high-performance Si anode.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要