Deformable mirror-based pupil chopping for exoplanet imaging and adaptive optics

arXiv (Cornell University)(2023)

引用 0|浏览2
暂无评分
摘要
Due to turbulence in the atmosphere images taken from ground-based telescopes become distorted. With adaptive optics (AO) images can be given greater clarity allowing for better observations with existing telescopes and are essential for ground-based coronagraphic exoplanet imaging instruments. A disadvantage to many AO systems is that they use sensors that can not correct for non-common path aberrations. We have developed a new focal plane wavefront sensing technique to address this problem called deformable mirror (DM)-based pupil chopping. The process involves a coronagraphic or non-coronagraphic science image and a deformable mirror, which modulates the phase by applying a local tip/tilt every other frame which enables correcting for leftover aberrations in the wavefront after a conventional AO correction. We validate this technique with both simulations (for coronagraphic and non-coronagraphic images) and testing (for non-coronagraphic images) on UCSC's Santa Cruz Extreme AO Laboratory (SEAL) testbed. We demonstrate that with as low as 250 nm of DM stroke to apply the local tip/tilt this wavefront sensor is linear for low-order Zernike modes and enables real-time control, in principle up to kHz speeds to correct for residual atmospheric turbulence.
更多
查看译文
关键词
exoplanet imaging,pupil,mirror-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要