谷歌浏览器插件
订阅小程序
在清言上使用

Exploring GaN crystallographic orientation disparity and its origin on bare and partly graphene-covered $m$-plane sapphire substrates

Hyunkyu Lee, Hyeonoh Jo,Jae Hun Kim, Jongwoo Ha, Su Young An,Jaewu Choi,Chinkyo Kim

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
The crystallographic orientation of 3D materials grown over 2D material-covered substrates is one of the critical factors in discerning the true growth mechanism among competing possibilities, including remote epitaxy, van der Waals epitaxy, and pinhole-seeded lateral epitaxy also known as thru-hole epitaxy. However, definitive identification demands meticulous investigation to accurately interpret experimentally observed crystallographic orientations, as misinterpretation can lead to mistaken conclusions regarding the underlying growth mechanism. In this study, we demonstrate that GaN domains exhibit orientation disparities when grown on both bare and partly graphene-covered $m$-plane sapphire substrates. Comprehensive measurements of crystallographic orientation unambiguously reveal that GaN domains adopt (100) and (103) orientations even when grown under identical growth conditions on bare and partly graphene-covered $m$-plane sapphire substrates, respectively. Particularly, high-resolution transmission electron microscopy unequivocally establishes that GaN grown over partly graphene-covered $m$-plane sapphire substrates started to nucleate on the exposed sapphire surface. Our research elucidates that crystallographic orientation disparities can arise even from thru-hole epitaxy, challenging the commonly accepted notion that such disparities cannot be attributed to thru-hole epitaxy when grown under identical growth conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要