Nutrient condition modulates the antibiotic tolerance of Pseudomonas aeruginosa.

The Science of the total environment(2023)

引用 0|浏览1
暂无评分
摘要
The variation in nutrient content across diverse environments has a significant impact on the survival and metabolism of microorganisms. In this study, we examined the influence of nutrients on the antibiotic tolerance of the PAO1 strain of Pseudomonas aeruginosa. Our findings indicate that under nutrient-rich conditions, this strain exhibited relatively high tolerance to ceftazidime, chloramphenicol, and tetracycline, but not aminoglycosides and fluoroquinolones. Transcriptome analysis revealed that genes associated with antibiotic tolerance were expressed more efficiently in nutrient-rich media, including ribosomal protein genes and multidrug efflux pump genes, which conferred higher tetracycline tolerance to the strain. Furthermore, the genes responsible for translation, biosynthesis, and oxidative phosphorylation were suppressed when nutrients were limited, resulting in decreased metabolic activity and lower sensitivity to ciprofloxacin. Artificial interference with ATP synthesis utilizing arsenate confirmed that the curtailment of energy provision bolstered the observed tolerance to ciprofloxacin. In general, our results indicate that this strain of P. aeruginosa tends to activate its intrinsic resistance mechanisms in nutrient-rich environments, thereby enhancing resistance to certain antibiotics. Conversely, in nutrient-limited environments, the strain is more likely to enter a dormant state, which enables it to tolerate antibiotics to which it would otherwise be sensitive. These findings further suggest that antibiotics released in environments with varying eutrophication levels may have divergent effects on the development of bacterial antibiotic resistance.
更多
查看译文
关键词
Nutrient,Antibiotic tolerance,Transcriptome,Resistance genes,Survival strategy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要