Quantum Walk Laser

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Synthetic lattices in photonics enable the exploration of light states in new dimensions, transcending phenomena common only to physical space. We propose and demonstrate a Quantum Walk Laser in synthetic frequency space formed by externally modulating a ring-shaped semiconductor laser with ultrafast recovery times. In this device, the initially ballistic quantum walk does not dissipate into low supermode states of the synthetic lattice; instead, thanks to the fast-gain nonlinearity of our quantum cascade laser active material, the state stabilizes in a broad frequency comb, unlocking the full potential of the lattice. This device produces a low-noise, nearly-flat broadband comb (reaching 100 cm$^{-1}$ bandwidth), well predicted by our models. The proposed Quantum Walk Laser offers a promising platform to generate broadband, tunable and stable frequency combs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要