Hydrogenative alkene perdeuteration aided by a transient cooperative ligand

NATURE CHEMISTRY(2023)

引用 0|浏览2
暂无评分
摘要
Deuterogenation of unsaturated organic compounds is an attractive route for installing C(sp3)-D bonds, but the existing methods typically use expensive D2 and introduce only two deuterium atoms per unsaturation. Herein we report the hydrogenative perdeuteration of alkenes using readily available H2 and D2O instead of D2, catalysed by an acridanide-based ruthenium pincer complex and resulting in the incorporation of up to 4.9 D atoms per C=C double bond in a single synthetic step. Importantly, adding a catalytic amount of thiol, which serves as a transient cooperative ligand, ensures the incorporation of deuterium rather than protium by balancing the rates of two sequential deuteration processes. The current method opens an avenue for installing perdeuteroalkyl groups at specific sites from widely available alkenes under mild conditions. Deuterogenation methods typically introduce only two deuterium atoms per unsaturation. Now the single-step hydrogenative perdeuteration of alkenes has been achieved using H2 and D2O, with incorporation of up to 4.9 D atoms per C=C double bond. The reaction is catalysed by a ruthenium pincer complex with a catalytic amount of thiol, which serves as a transient cooperative ligand.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要