谷歌浏览器插件
订阅小程序
在清言上使用

The Voltage-Gated Sodium Channel, Para, Limits Anopheles Coluzzii Vector Competence in a Microbiota Dependent Manner

SCIENTIFIC REPORTS(2023)

引用 0|浏览14
暂无评分
摘要
The voltage-gated sodium channel, para, is a target of DDT and pyrethroid class insecticides. Single nucleotide mutations in para, called knockdown resistant or kdr, which contribute to resistance against DDT and pyrethroid insecticides, have been correlated with increased susceptibility of Anopheles to the human malaria parasite Plasmodium falciparum. However, a direct role of para activity on Plasmodium infection has not yet been established. Here, using RNA-mediated silencing, we provide in vivo direct evidence for the requirement of wild-type (wt) para function for insecticide activity of deltamethrin. Depletion of wt para, which is susceptible to insecticide, causes deltamethrin tolerance, indicating that insecticide-resistant kdr alleles are likely phenocopies of loss of para function. We then show that normal para activity in An. coluzzii limits Plasmodium infection prevalence for both P. falciparum and P. berghei. A transcriptomic analysis revealed that para activity does not modulate the expression of immune genes. However, loss of para function led to enteric dysbiosis with a significant increase in the total bacterial abundance, and we show that para function limiting Plasmodium infection is microbiota dependent. In the context of the bidirectional "enteric microbiota-brain" axis studied in mammals, these results pave the way for studying whether the activity of the nervous system could control Anopheles vector competence.
更多
查看译文
关键词
Malaria,Metagenomics,Parasite host response,RNAi,Transcriptomics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要