Wall-attached convection under strong inclined magnetic fields

JOURNAL OF FLUID MECHANICS(2024)

引用 0|浏览17
暂无评分
摘要
We employ a linear stability analysis and direct numerical simulations to study the characteristics of wall modes in thermal convection in a rectangular box under strong and inclined magnetic fields. The walls of the convection cell are electrically insulated. The stability analysis assumes periodicity in the spanwise direction perpendicular to the plane of a homogeneous magnetic field. Our study shows that for a fixed vertical magnetic field, the imposition of horizontal magnetic fields results in an increase of the critical Rayleigh number along with a decrease in the wavelength of the wall modes. The wall modes become tilted along the direction of the resulting magnetic fields and therefore extend further into the bulk as the horizontal magnetic field is increased. Once the modes localized on the opposite walls interact, the critical Rayleigh number decreases again and eventually drops below the value for onset with a purely vertical field. We find that for sufficiently strong horizontal magnetic fields, the steady wall modes occupy the entire bulk and therefore convection is no longer restricted to the sidewalls. The aforementioned results are confirmed by direct numerical simulations of the nonlinear evolution of magnetoconvection. The direct numerical simulation results also reveal that at least for large values of horizontal magnetic field, the wall-mode structures and the resulting heat transfer are dependent on the initial conditions.
更多
查看译文
关键词
Benard convection,buoyancy-driven instability,magnetoconvection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要