Confined Heterojunction in Hollow-Structured TiO2 and Its Directed Effect in Photodriven Seawater Splitting

ACS nano(2023)

引用 0|浏览13
暂无评分
摘要
The high salinity of seawater often strongly affects the activity and stability of photocatalysts utilized for photodriven seawater splitting. The current investigation is focused on the photocatalyst H-TiO2/Cu2O, comprised of hydroxyl-enriched hollow mesoporous TiO2 microspheres containing incorporated Cu2O nanoparticles. The design of H-TiO2/Cu2O is based on the hypothesis that the respective hollow and mesoporous structure and hydrophilic surfaces of TiO2 microspheres would stabilize Cu2O nanoparticles in seawater and provide efficient and selective proton adsorption. H-TiO2/Cu2O shows hydrogen production performances of 45.7 mmol/(g center dot h) in simulated seawater and 17.9 mmol/(g center dot h) in natural seawater, respectively. An apparent quantum yield (AQY) in hydrogen production of 18.8% in water (and 14.9% in natural seawater) was obtained at 365 nm. Moreover, HTiO2/Cu2O displays high stability and can maintain more than 90% hydrogen evolution activity in natural seawater for 30 h. A direct mass- and energy- transfer mechanism is proposed to clarify the superior performance of H-TiO2/Cu2O in seawater splitting.
更多
查看译文
关键词
hierarchical materials, titanium oxide, confinedtransformation, directional photo/electrocatalysis, hydrogen production from seawater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要