Chrome Extension
WeChat Mini Program
Use on ChatGLM

2'-Fucosyllactose (2'-FL) Changes Infants Gut Microbiota Composition and Their Metabolism in a Host-Free Human Colonic Model.

Food research international(2023)

Cited 1|Views18
No score
Abstract
BACKGROUND:Breast milk is critical for neonates, providing the necessary energy, nutrients, and bioactive compounds for growth and development. Research indicated that human milk oligosaccharides (HMOs) have been shown to shape a beneficial gut microbiota, as well as their metabolism (e.g. short-chain fatty acids). 2'-Fucosyllactose (2'-FL) is one major HMO that composed of 30% of total HMOs.OBJECTIVES:This study aimed to understand the impact of 2'-FL on the composition and metabolism of infant gut microbiota.METHODS:Our study utilized an in-vitro human colonic model (HCM) to investigate the host-free interactions between 2'-FL and infant gut microbiota. To simulate the infant gut microbiota, we inoculated the HCM system with eight representative bacterial species from infant gut microbiota. The effects of 2'-FL on the gut microbial composition and their metabolism were determined through real-time quantitative PCR and liquid-chromatography mass spectrometry (LC/MS). The obtained data were analyzed using Compound Discoverer 3.1 and MetaboAnalyst 4.0.RESULTS:Our study findings suggest that the intervention of 2'-FL in HCM resulted in a significant change in the abundance of representative bacterial species. PCR analysis showed a consistent increase in the abundance of Parabacteroides. distasonis in all three colon sections. Furthermore, analysis of free fatty acids revealed a significant increase in their levels in the ascending, transverse, and descending colons, except for caproic acid, which was significantly reduced to a non-detectable level. The identification of significant extracellular polar metabolites, such as glutathione and serotonin, enabled us to distinguish between the metabolomes before and after 2'-FL intervention. Moreover, correlation analysis revealed a significant association between the altered microbes and microbial metabolites.CONCLUSIONS:In summary, our study demonstrated the impact of 2'-FL intervention on the defined composition of infant gut microbiota and their metabolic pathways in an in vitro setting. Our findings provide valuable insights for future follow-up investigations into the role of 2'-FL in regulating the growth and development of infant gut microbiota in vivo.
More
Translated text
Key words
Human milk oligosaccharide,2'-FL,Infant,Gut microbiota,Metabolomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined