In Situ Observation of Domain Wall Lateral Creeping in a Ferroelectric Capacitor

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 0|浏览3
暂无评分
摘要
As a promising candidate for next-generation nonvolatile memory devices, ferroelectric oxide films exhibit many emergent phenomena with functional applications, making understanding polarization switching and domain evolution behaviors of fundamental importance. However, tracking domain wall motion in ferroelectric oxide films with high spatial resolution remains challenging. Here, an in situ biasing approach for direct atomic-scale observations of domain nucleation and sideways motion is presented. By accurately controlling the applied electric field, the lateral translational speed of the domain wall can decrease to less than 2.2 & ANGS; s(-1), which is observable with atomic resolution STEM imaging. In situ observations on a capacitor structured PbZr0.1Ti0.9O3/La0.7Sr0.3MnO3 heterojunction demonstrate the unique creeping behavior of a domain wall under a critical electric field, with the atomic structure of the creeping domain wall revealed. Moreover, the evolution of the metastable domain wall forms an elongated morphology, which contains a large proportion of charged segments. Phase-field simulations unveil the competition between gradient, elastic, and electrostatic energies that decide this unique domain wall creeping and morphology variation. This work paves the way toward a complete fundamental understanding of domain wall physics and potential modulations of domain wall properties in real devices.
更多
查看译文
关键词
ferroelectric capacitor,domain wall lateral creeping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要