Atomic layer deposition of ZnO on PLA/TiO2 bionanocomposites: Evaluation of surface chemistry and physical properties toward food packaging applications

JOURNAL OF APPLIED POLYMER SCIENCE(2023)

引用 0|浏览2
暂无评分
摘要
The impact of titanium dioxide (TiO2) on the physical properties of poly(lactic acid) (PLA) is explored, along with the combined effect of Atomic Layer Deposition of zinc oxide (ZnO) on the nanocomposite films' surface. PLA/TiO2 bionanocomposites are prepared via melt-extrusion and characterized in terms of their morphological, thermal, and mechanical properties. Homogeneous dispersion of the filler offers enhanced mechanical performance for samples up to 5 wt% in TiO2 content. Thermal stability of PLA is also slightly improved upon increasing TiO2 content. This work also demonstrates that surface modification of PLA/TiO2 films employing Atomic Layer Deposition of zinc oxide enhances hydrophobicity, while antimicrobial activity, although mild, appears enhanced for coated samples. Water vapor permeability is retained in both coated and uncoated nanocomposites. Surface characterization of the studied specimens, by x-ray photoelectron spectroscopy and scanning electron microscopy, reveals subsurface diffusion and reaction of the depositing compounds within PLA, leading to a different surface chemistry involving Zn(OH)(2). This study gives valuable insights on the parameters affecting the atomic layer deposition of inorganic coatings on a polymeric substrate in the presence of nanoinclusions and, therefore, on the physical properties of the coated films, providing the pathway for their exploitation in food packaging applications.
更多
查看译文
关键词
atomic layer deposition, bionanocomposites, poly(lactic acid), titanium dioxide, zinc oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要