Energetic ion enhancements in sheaths driven by interplanetary coronal mass ejections

ASTROPHYSICS AND SPACE SCIENCE(2023)

引用 0|浏览23
暂无评分
摘要
We analyze here an energetic proton enhancement in a sheath ahead of a slow interplanetry coronal mass ejection (ICME) detected by Parker Solar Probe on June 30, 2021 at the heliospheric distance of 0.76 AU. The shock was likely quasi-parallel and had a high Mach number. However, the proton fluxes were not enhanced at the shock but about an hour later. The fluxes stayed elevated with a sporadic behaviour throughout the sheath. We suggest that some mechanism internal to the sheath was responsible for the energization. The observations show enhanced levels of magnetic field fluctuations in the sheath and frequent presence of highly reduced magnetic helicity structures ( σ _m ) at various time scales, representing either small-scale flux ropes or Alfvénic fluctuations that could have contributed to the energization. The correlation between the energetic proton fluxes and normalized fluctuation amplitudes/occurrence of high σ _m structures was generally weak or negligible. The most striking feature of the sheath was a strong enhancement of density (up to 50 cm −3 ) that implies the importance of compressive acceleration in the sheath. A statistical analysis of ion enhancements of 73 sheaths detected by ACE at ∼ 1 AU reveals that this sheath was peculiar as in ICME-driven sheaths preceded by strong shocks the ion fluxes typically peak at the shock and strongly decline through the sheath.
更多
查看译文
关键词
Particle acceleration,Solar wind,Interplanetary shocks,Coronal mass ejections
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要