Semiconductor Emitters in Entropy Sources for Quantum Random Number Generation

ANNALEN DER PHYSIK(2023)

引用 0|浏览12
暂无评分
摘要
Random number generation (RNG) is needed for a myriad of applications ranging from secure communication encryption to numerical simulations to sports and games. However, generating truly random numbers can be elusive. Pseudorandom bit generation using computer algorithms provides a high random bit generation rate. Nevertheless, the reliance on predefined algorithms makes it deterministic and predictable once initial conditions are known. Relying on physical phenomena (such as measuring electrical noise or even rolling dice) can achieve a less predictable sequence of bits. Furthermore, if the physical phenomena originate from quantum effects, they can be truly random and completely unpredictable due to quantum indeterminacy. Traditionally, physical RNG is significantly slower than pseudorandom techniques. To meet the demand for high-speed RNG with perfect unpredictability, semiconductor light sources are adopted as parts of the sources of randomness, i.e., entropy sources, in quantum RNG (QRNG) systems. The high speed of their noise, the high efficiency, and the small scale of these devices make them ideal for chip-scale QRNG. Here, the applications and recent advances of QRNG are reviewed using semiconductor emitters. Finally, the performance of these emitters is compared and discuss their potential in future technologies.
更多
查看译文
关键词
quantum random number generation,entropy sources,semiconductor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要