Characterization of cooperative PS-oligo activation of human TLR9.

Molecular therapy. Nucleic acids(2023)

引用 0|浏览0
暂无评分
摘要
Single-stranded phosphorothioate oligonucleotides (PS-oligos) can activate TLR9, leading to an innate immune response. This can occur with PS-oligos containing unmethylated CpG sites, the canonical motif, or PS-oligos that do not contain those motifs (non-CpG). Structural evidence shows that TLR9 contains two PS-oligo binding sites, and recent data suggest that synergistic cooperative activation of TLR9 can be achieved by adding two separate PS-oligos to cells, each engaging with a separate site on TLR9 to enhance TLR9 activation as a pair. Here, we demonstrate and characterize this cooperativity phenomenon using PS-oligos in human cell lines, and we introduce several novel PS-oligo pairs (CpG and non-CpG pairs) that show cooperative activation. Indeed, we find that cooperative PS-oligos likely bind at different sites on TLR9. Interestingly, we find that PS-oligos that generate little TLR9 activation on their own can prime TLR9 to be activated by other PS-oligos. Finally, we determine that previous models of TLR9 activation cannot be used to fully explain data from systems using human TLR9 and PS-oligos. Overall, we reveal new details of TLR9 activation, but we also find that more work needs to be done to determine where certain PS-oligos are binding to TLR9.
更多
查看译文
关键词
MT: Oligonucleotides: Therapies and Applications,TLR9,PS-ASO,CpG,innate immunity,receptor cooperativity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要