p53 Gain-of-Function Mutation Induces Metastasis via BRD4-Dependent CSF-1 Expression

Gizem Efe, Karen J. Dunbar, Kensuke Sugiura,Katherine Cunningham, Saul Carcamo,Spyros Karaiskos, Qiaosi Tang,Ricardo Cruz-Acuna, Lois Resnick-Silverman, Jessica Peura,Chao Lu, Dan Hasson,Andres J. Klein-Szanto, Alison M. Taylor,James J. Manfredi, Carol Prives,Anil K. Rustgi

CANCER DISCOVERY(2023)

引用 0|浏览9
暂无评分
摘要
A common TP53 gain-of-function mutation, R172H, forms a complex with BRD4, leading to increased expression of CSF-1 and ensuing tumor metastasis of esophageal squamous cell carcinoma, thereby opening a pathway for new therapeutic avenues. Abstract TP53 mutations are frequent in esophageal squamous cell carcinoma (ESCC) and other SCCs and are associated with a proclivity for metastasis. Here, we report that colony-stimulating factor-1 (CSF-1) expression is upregulated significantly in a p53-R172H-dependent manner in metastatic lung lesions of ESCC. The p53-R172H-dependent CSF-1 signaling, through its cognate receptor CSF-1R, increases tumor cell invasion and lung metastasis, which in turn is mediated in part through Stat3 phosphorylation and epithelial-to-mesenchymal transition (EMT). In Trp53(R172H) tumor cells, p53 occupies the Csf-1 promoter. The Csf-1 locus is enriched with histone 3 lysine 27 acetylation (H3K27ac), which is likely permissive for fostering an interaction between bromodomain-containing domain 4 (BRD4) and p53-R172H to regulate Csf-1 transcription. Inhibition of BRD4 not only reduces tumor invasion and lung metastasis but also reduces circulating CSF-1 levels. Overall, our results establish a novel p53-R172H-dependent BRD4-CSF-1 axis that promotes ESCC lung metastasis and suggest avenues for therapeutic strategies for this difficult-to-treat disease. Significance: The invasion-metastasis cascade is a recalcitrant barrier to effective cancer therapy. We establish that the p53-R172H-dependent BRD4-CSF-1 axis is a mediator of prometastatic properties, correlates with patient survival and tumor stages, and its inhibition significantly reduces tumor cell invasion and lung metastasis. This axis can be exploited for therapeutic advantage. This article is featured in Selected Articles from This Issue, p. 2489
更多
查看译文
关键词
p53,metastasis,mutation,gain-of-function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要