Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence.

Plant science : an international journal of experimental plant biology(2023)

引用 0|浏览6
暂无评分
摘要
Nitrogen (N) is a basic building block that plays an essential role in the maintenance of normal plant growth and its metabolic functions through complex regulatory networks. Such the N metabolic network comprises a series of transcription factors (TFs), with the coordinated actions of phytohormone and sugar signaling to sustain cell homeostasis. The fluctuating N concentration in plant tissues alters the sensitivity of several signaling pathways to stressful environments and regulates the senescent-associated changes in cellular structure and metabolic process. Here, we review recent advances in the interaction between N assimilation and carbon metabolism in response to N deficiency and its regulation to the nutrient remobilization from source to sink during leaf senescence. The regulatory networks of N and sugar signaling for N deficiency-induced leaf senescence is further discussed to explain the effects of N deficiency on chloroplast disassembly, reactive oxygen species (ROS) burst, asparagine metabolism, sugar transport, autophagy process, Ca2+ signaling, circadian clock response, brassinazole-resistant 1 (BZRI), and other stress cell signaling. A comprehensive understanding for the metabolic mechanism and regulatory network underlying N deficiency-induced leaf senescence may provide a theoretical guide to optimize the source-sink relationship during grain filling for the achievement of high yield by a selection of crop cultivars with the properly prolonged lifespan of functional leaves and/or by appropriate agronomic managements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要