How to Detect an Astrophysical Nanohertz Gravitational Wave Background

Bence Becsy,Neil J. Cornish,Patrick M. Meyers,Luke Zoltan Kelley,Gabriella Agazie,Akash Anumarlapudi,Anne M. Archibald,Zaven Arzoumanian,Paul T. Baker,Laura Blecha,Adam Brazier,Paul R. Brook,Sarah Burke-Spolaor,J. Andrew Casey-Clyde,Maria Charisi,Shami Chatterjee,Katerina Chatziioannou,Tyler Cohen,James M. Cordes,Fronefield Crawford,H. Thankful Cromartie,Kathryn Crowter,Megan E. Decesar,Paul B. Demorest,Timothy Dolch,Elizabeth C. Ferrara,William Fiore,Emmanuel Fonseca, Gabriel E. Freedman,Nate Garver-Daniels,Peter A. Gentile,Joseph Glaser,Deborah C. Good,Kayhan Gueltekin,Jeffrey S. Hazboun, Sophie Hourihane,Ross J. Jennings,Aaron D. Johnson,Megan L. Jones,Andrew R. Kaiser,David L. Kaplan,Matthew Kerr,Joey S. Key,Nima Laal,Michael T. Lam,William G. Lamb,T. Joseph W. Lazio,Natalia Lewandowska,Tyson B. Littenberg,Tingting Liu,Duncan R. Lorimer,Jing Luo,Ryan S. Lynch,Chung-Pei Ma,Dustin R. Madison,Alexander Mcewen,James W. Mckee,Maura A. Mclaughlin, Natasha Mcmann,Bradley W. Meyers,Chiara M. F. Mingarelli,Andrea Mitridate,Cherry Ng,David J. Nice,Stella Koch Ocker,Ken D. Olum,Timothy T. Pennucci,Benetge B. P. Perera,Nihan S. Pol, Henri A. Radovan,Scott M. Ransom,Paul S. Ray,Joseph D. Romano,Shashwat C. Sardesai,Ann Schmiedekamp, Carl Schmiedekamp,Kai Schmitz,Brent J. Shapiro-Albert,Xavier Siemens,Joseph Simon,Magdalena S. Siwek,Sophia V. Sosa Fiscella,Ingrid H. Stairs,Daniel R. Stinebring,Kevin Stovall,Abhimanyu Susobhanan,Joseph K. Swiggum, Stephen R. Taylor,Jacob E. Turner,Caner Unal,Michele Vallisneri,Rutger van Haasteren,Sarah J. Vigeland,Haley M. Wahl,Caitlin A. Witt,Olivia Young

ASTROPHYSICAL JOURNAL(2023)

引用 0|浏览34
暂无评分
摘要
Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them.
更多
查看译文
关键词
Gravitational waves,Gravitational wave sources,Gravitational wave astronomy,Supermassive black holes,Astronomy data analysis,Bayesian statistics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要