Control-Oriented Modeling and Layer-to-Layer Spatial Control of Powder Bed Fusion Processes

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
Powder Bed Fusion (PBF) is an important Additive Manufacturing (AM) process that is seeing widespread utilization. However, due to inherent process variability, it is still very costly and time consuming to certify the process and the part. This has led researchers to conduct numerous studies in process modeling, in-situ monitoring and feedback control to better understand the PBF process and decrease variations, thereby making the process more repeatable. In this study, we develop a layer-to-layer, spatial, control-oriented thermal PBF model. This model enables a framework for capturing spatially-driven thermal effects and constructing layer-to-layer spatial controllers that do not suffer from inherent temporal delays. Further, this framework is amenable to voxel-level monitoring and characterization efforts. System output controllability is analyzed and output controllability conditions are determined. A spatial Iterative Learning Controller (ILC), constructed using the spatial modeling framework, is implemented in two experiments, one where the path and part geometry are layer-invariant and another where the path and part geometry change each layer. The results illustrate the ability of the controller to thermally regulate the entire part, even at corners that tend to overheat and even as the path and part geometry change each layer.
更多
查看译文
关键词
fusion,powder
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要