The identification of key metabolites and mechanisms during isoniazid/ rifampicin-induced neurotoxicity and hepatotoxicity in a mouse model by HPLC-TOF/MS-based untargeted urine metabolomics

Journal of pharmaceutical and biomedical analysis(2023)

引用 0|浏览5
暂无评分
摘要
The co-administration of isoniazid (INH) and rifampicin (RIF) is associated with hepatotoxicity and neurotoxicity. To systematically investigate the mechanisms of hepatotoxicity and neurotoxicity induced by INH/RIF, we used high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF/MS)-based untargeted metabolomics to analyze urine from a mouse model and screened a range of urinary biomarkers. Mice were orally co-administered with INH (120 mg/kg) and RIF (240 mg/kg) and urine samples were collected on days 0, 7, 14 and 21. Hepatotoxicity and neurotoxicity were assessed by samples of liver, brain and kidney tissue which were harvested for histological analysis. Toxicity analysis revealed that INH/RIF caused hepatotoxicity and neurotoxicity in a time-dependent manner; compared with day 0, the levels of 35, 82 and 86 urinary metabolites were significantly different on days 7, 14 and 21, respectively. Analysis showed that by day 21, exposure to INH+RIF had caused disruption in vitamin B6 metabolism; the biosynthesis of unsaturated fatty acids; tyrosine, taurine, hypotaurine metabolism; the synthesis of ubiquinone and other terpenoid-quinones; and the metabolism of tryptophan, nicotinate and nicotinamide. Nicotinic acid, nicotinuric acid and kynurenic acid were identified as sensitive urinary biomarkers that may be useful for the diagnosis and evaluation of toxicity.
更多
查看译文
关键词
Biomarkers,Hepatotoxicity,Isoniazid,Metabolomics,Neurotoxicity,Rifampicin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要