Rab7a activation promotes degradation of select tight junction proteins at the blood-brain barrier after ischemic stroke.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览2
暂无评分
摘要
The stability of tight junctions (TJs) between endothelial cells (ECs) is essential to maintain blood-brain barrier (BBB) function in the healthy brain. Following ischemic stroke, TJ strand dismantlement due to protein degradation leads to BBB dysfunction, yet the mechanisms driving this process are poorly understood. Here, we show that endothelial-specific ablation of Rab7a, a small GTPase that regulates endolysosomal protein degradation, reduces stroke-induced TJ strand disassembly resulting in decreased paracellular BBB permeability and improved neuronal outcomes. Two pro-inflammatory cytokines, TNFα and IL1β, but not glucose and oxygen deprivation, induce Rab7a activation via Ccz1 in brain ECs in vitro, leading to increased TJ protein degradation and impaired paracellular barrier function. Silencing Rab7a in brain ECs in vitro reduces cytokine-driven endothelial barrier dysfunction by suppressing degradation of a key BBB TJ protein, Claudin-5. Thus, Rab7a activation by inflammatory cytokines promotes degradation of select TJ proteins leading to BBB dysfunction after ischemic stroke.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要