Deep eutectic solvent-based blended membranes for ultra-super selective separation of SO2.

Journal of hazardous materials(2023)

引用 0|浏览3
暂无评分
摘要
SO2 is a major atmospheric pollutant leading to acid rain and smog. As a new generation of green solvents, deep eutectic solvents (DESs) have been widely investigated for gas capture. Nevertheless, studies on DES-based membranes for SO2 separation are yet minimal. Herein, we devised polymer/DES blended membranes comprising 1-butyl-3-methyl-imidazolium bromide ([Bmim]Br)/diethylene glycol (DEG) DES and poly (vinylidene fluoride) (PVDF), and these membranes were firstly used for selective separation of SO2 from N2 and CO2. The permeability of SO2 reaches up to 17480 Barrer (0.20 bar, 40 ºC) in PVDF/DES blended membrane containing 50 wt% of [Bmim]Br/DEG (2:1), with ultrahigh SO2/N2 and SO2/CO2 selectivity of 3690 and 211 obtained, respectively, far exceeding those in the state-of-the-art membranes reported in literature. The highly-reversible multi-site interaction between SO2 and [Bmim]Br/DEG DES was revealed by spectroscopic analysis. Furthermore, the PVDF/DES blended membrane was also able to efficiently and stably separate SO2/CO2/N2 (2.5/15/82.5%) mixed gas for at least 100 h. This work demonstrates for the first time that [Bmim]Br-based DESs are very efficient media for membrane separation of SO2. The easy preparation, low cost and high performance enable polymer/DES blended membranes to be promising candidates for flue gas desulfurization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要