Mask-Free Patterned Perovskite Microcavity Arrays via Inkjet Printing Targeting Laser Emission.

The journal of physical chemistry letters(2023)

引用 0|浏览5
暂无评分
摘要
Perovskite materials are promising candidates for the implementation of electrically pumped lasers considering the enhanced performance of perovskite-based light-emitting diodes. Nonetheless, current methods of fabricating perovskite optical microcavities require complex patterning technologies to build suitable resonant cavities for perovskite laser emission, burdening the device structure design. To address this issue, we applied inkjet printing, a maskless patterning technique, to directly create spontaneous formations of polycrystalline perovskite microcavity arrays to explore their laser-emitting action. The substrate surface tension was tuned to modulate the perovskite crystallization process in combination with optimization of printing ink recipes. As a result, polycrystalline perovskite microcavity arrays were achieved, contributing to the laser emission at 528 nm with a lasing threshold of 1.37 mJ/cm, while simultaneously achieving high-definition patterning of flexible display. These results clearly illustrate the efficiency of inkjet printing technology in the preparation of polycrystalline perovskite optical microcavities and promote the development of flexible laser arrayed displays, providing a facile process toward the realization of perovskite-cavity laser devices.
更多
查看译文
关键词
inkjet printing,laser emission,perovskite,mask-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要