A comprehensive evaluation of spontaneous pelvic organ prolapse in rhesus macaques as an ideal model for the study of human pelvic organ prolapse

Science bulletin(2023)

引用 0|浏览11
暂无评分
摘要
Pelvic organ prolapse (POP) seriously affects a woman's quality of life, and the treatment complications are severe. Although new surgical treatments are being developed, the host tissue responses and safety need to be evaluated in preclinical trials. However, there is a lack of suitable animal models, as most quadrupeds exhibit different structural and pathological changes. In this study, 72 elderly rhesus maca-ques (Macaca mulatta) were physically examined, and the incidence of spontaneous POP was similar to that in humans. The vaginal wall from five control monkeys and four monkeys with POP were selected for further analysis. Verhoeff-van Gieson staining showed that elastin content decreased significantly in monkeys with POP compared with control samples. Immunohistological staining revealed that the smooth muscle bundles in monkey POP appeared disorganized, and the number of large muscle bundles decreased significantly. The collagen I/III ratio in monkey POP also significantly decreased, as revealed by Sirius Red staining. These histological and biochemical changes in monkeys with POP were similar to those in humans with POP. Moreover, we generated a single-cell transcriptomic atlas of the prolapsed monkey vagina. Cross-species analysis between humans and monkeys revealed a comparable cellular composition. Notably, a differential gene expression analysis determined that dysregulation of the extra-cellular matrix and an immune disorder were the conserved molecular mechanisms. The interplay between fibroblasts and macrophages contributed to human and monkey POP. Overall, this study repre-sents a comprehensive evaluation of spontaneous POP in rhesus macaques and demonstrates that mon-keys are a suitable animal model for POP research.(c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
Pelvic organ prolapse,Animal model,Rhesus macaque,Mechanism,scRNA-seq
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要