CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

Nature Machine Intelligence(2023)

引用 8|浏览4
暂无评分
摘要
Large-scale simulations with complex electron interactions remain one of the greatest challenges for atomistic modelling. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study technologically relevant phenomena. Here we present the Crystal Hamiltonian Graph Neural Network (CHGNet), a graph neural network-based machine-learning interatomic potential (MLIP) that models the universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory calculations of more than 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li x MnO 2 , the finite temperature phase diagram for Li x FePO 4 and Li diffusion in garnet conductors. We highlight the significance of charge information for capturing appropriate chemistry and provide insights into ionic systems with additional electronic degrees of freedom that cannot be observed by previous MLIPs.
更多
查看译文
关键词
universal neural network potential,neural network,charge-informed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要