Building Semi-Analytic Black Hole Seeding Models Using IllustrisTNG Host Galaxies

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Because early black holes (BHs) grew to $\sim10^{9} ~M_\odot$ in less than 1 Gyr of cosmic time, BH seeding models face stringent constraints. To efficiently constrain the parameter space of possible seeding criteria, we combine the advantages of the cosmological IllustrisTNG (TNG) simulations with the flexibility of semi-analytic modeling. We identify TNG galaxies as BH seeding sites based on various criteria including a minimum gas mass of $10^7$-$10^9~M_\odot$, total host mass of $10^{8.5}$-$10^{10.5}~M_\odot$, and a maximum gas metallicity of $0.01 - 0.1 ~Z_\odot$. Each potential host is assigned a BH seed with a probability of $0.01 - 1$; these BHs are then traced through the TNG galaxy merger tree. This approach improves upon the predictive power of the simple TNG BH seeding prescription, especially in the low-mass regime at high redshift, and it is readily adaptable to other cosmological simulations. Most of our seed models predict $z\lesssim4$ BH mass densities that are consistent with empirical data as well as the TNG BHs. However, high-redshift BH number densities can differ by factors of $\sim$ 10 - 100 between models. In most models, $\lesssim10^5~M_\odot$ BHs substantially outnumber heavier BHs at high redshifts. Mergers between such BHs are prime targets for gravitational-wave detection with LISA. The $z=0$ BH mass densities in most models agree well with observations, but our strictest seeding criteria fail at high redshift. Our findings strongly motivate the need for better empirical constraints on high-$z$ BHs, and they underscore the significance of recent AGN discoveries with JWST.
更多
查看译文
关键词
galaxies,illustristng host
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要