Effects of altered functional connectivity on motor imagery brain-computer interfaces based on the laterality of paralysis in hemiplegia patients.

Computers in biology and medicine(2023)

引用 0|浏览6
暂无评分
摘要
Motor imagery (MI)-based brain-computer interfaces are widely employed for improving the rehabilitation of paralyzed people and their quality of life. It has been well documented that brain activity patterns in the primary motor cortex and sensorimotor cortex during MI are similar to those of motor execution/imagery. However, individuals paralyzed owing to various neurological disorders have debilitated activation of the motor control region. Therefore, the differences in brain activation based on the paralysis location should be considered. We analyzed brain activation patterns using the electroencephalogram (EEG) acquired while performing MI on the right upper limb to investigate hemiplegia-related brain activation patterns. Participants with hemiplegia of the right upper limb (n=7) and left upper limb (n=4) performed the MI task within the right upper limb. EEG signals were acquired using 14 channels based on a 10-20 global system, and analyzed for event-related desynchronization (ERD) based on event-related spectral perturbation and functional connectivity, using the weighted phase-lag index of both hemispheres at the location of hemiplegia. Enhanced ERD was found in the ipsilateral region, compared to the contralateral region, after MI of the affected limb. The reduced difference in the centrality of the channels was observed in all subjects, likely reflecting an altered brain network from increased interhemispheric connections. Furthermore, the tendency of distinct network-based features depending on the MI task on the affected limb was diluted between the inter-hemispheres. Analysis of interaction between inter-region using functional connectivity could provide avenues for further investigation of BCI strategy through the brain state of individuals with hemiplegia.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要