DeWave: Discrete EEG Waves Encoding for Brain Dynamics to Text Translation

CoRR(2023)

引用 0|浏览30
暂无评分
摘要
The translation of brain dynamics into natural language is pivotal for brain-computer interfaces (BCIs). With the swift advancement of large language models, such as ChatGPT, the need to bridge the gap between the brain and languages becomes increasingly pressing. Current methods, however, require eye-tracking fixations or event markers to segment brain dynamics into word-level features, which can restrict the practical application of these systems. To tackle these issues, we introduce a novel framework, DeWave, that integrates discrete encoding sequences into open-vocabulary EEG-to-text translation tasks. DeWave uses a quantized variational encoder to derive discrete codex encoding and align it with pre-trained language models. This discrete codex representation brings forth two advantages: 1) it realizes translation on raw waves without marker by introducing text-EEG contrastive alignment training, and 2) it alleviates the interference caused by individual differences in EEG waves through an invariant discrete codex with or without markers. Our model surpasses the previous baseline (40.1 and 31.7) by 3.06 6.34 Dataset. This work is the first to facilitate the translation of entire EEG signal periods without word-level order markers (e.g., eye fixations), scoring 20.5 BLEU-1 and 29.5 Rouge-1 on the ZuCo Dataset.
更多
查看译文
关键词
discrete eeg waves encoding,brain dynamics,text,dewave
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要