Brain-wide functional connectivity artifactually inflates throughout fMRI scans: a problem and solution.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览2
暂无评分
摘要
The fMRI blood oxygen level-dependent (BOLD) signal is a mainstay of neuroimaging assessment of neuronal activity and functional connectivity in vivo. Thus, a chief priority is maximizing this signal's reliability and validity. To this end, the fMRI community has invested considerable effort into optimizing both experimental designs and physiological denoising procedures to improve the accuracy, across-scan reproducibility, and subject discriminability of BOLD-derived metrics like functional connectivity. Despite these advances, we discover that a substantial and ubiquitous defect remains in fMRI datasets: functional connectivity throughout the brain artifactually inflates during the course of fMRI scans - by an average of more than 70% in 15 minutes of scan time - at spatially heterogeneous rates, producing both spatial and temporal distortion of brain connectivity maps. We provide evidence that this inflation is driven by a previously unrecognized time-dependent increase of non-neuronal, systemic low-frequency oscillation (sLFO) blood flow signal during fMRI scanning. This signal is not removed by standard denoising procedures such as independent component analysis (ICA). However, we demonstrate that a specialized sLFO denoising procedure - Regressor Interpolation at Progressive Time Delays (RIPTiDe) - can be added to standard denoising pipelines to significantly attenuate functional connectivity inflation. We confirm the presence of sLFO-driven functional connectivity inflation in multiple independent fMRI datasets - including the Human Connectome Project - as well as across resting-state, task, and sleep-state conditions, and demonstrate its potential to produce false positive findings. Collectively, we present evidence for a previously unknown physiological phenomenon that spatiotemporally distorts estimates of brain connectivity in human fMRI datasets, and present a solution for mitigating this artifact.
更多
查看译文
关键词
fmri scans,brain-wide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要