CoFiI2P: Coarse-to-Fine Correspondences for Image-to-Point Cloud Registration

Shuhao Kang, Youqi Liao, Jianping Li, Fuxun Liang, Yuhao Li, Xianghong Zou, Fangning Li, Xieyuanli Chen, Zhen Dong, Bisheng Yang

arxiv(2023)

引用 0|浏览9
暂无评分
摘要
Image-to-point cloud (I2P) registration is a fundamental task for robots and autonomous vehicles to achieve cross-modality data fusion and localization. Existing I2P registration methods estimate correspondences at the point/pixel level, often overlooking global alignment. However, I2P matching can easily converge to a local optimum when performed without high-level guidance from global constraints. To address this issue, this paper introduces CoFiI2P, a novel I2P registration network that extracts correspondences in a coarse-to-fine manner to achieve the globally optimal solution. First, the image and point cloud data are processed through a Siamese encoder-decoder network for hierarchical feature extraction. Second, a coarse-to-fine matching module is designed to leverage these features and establish robust feature correspondences. Specifically, In the coarse matching phase, a novel I2P transformer module is employed to capture both homogeneous and heterogeneous global information from the image and point cloud data. This enables the estimation of coarse super-point/super-pixel matching pairs with discriminative descriptors. In the fine matching module, point/pixel pairs are established with the guidance of super-point/super-pixel correspondences. Finally, based on matching pairs, the transform matrix is estimated with the EPnP-RANSAC algorithm. Extensive experiments conducted on the KITTI dataset demonstrate that CoFiI2P achieves impressive results, with a relative rotation error (RRE) of 1.14 degrees and a relative translation error (RTE) of 0.29 meters. These results represent a significant improvement of 84 compared to the current state-of-the-art (SOTA) method. The project page is available at .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要