Biodiesel Production from Waste Cooking Oil Using Extracted Catalyst from Plantain Banana Stem via RSM and ANN Optimization for Sustainable Development

SUSTAINABILITY(2023)

引用 0|浏览3
暂无评分
摘要
Biodiesel is a promising sector worldwide and is experiencing significant and rapid growth. Several studies have been undertaken to utilize homogeneous base catalysts in the form of KOH to develop biodiesel in order to establish a commercially viable and sustainable biodiesel industry. This research centers around extracting potassium hydroxide (KOH) from banana trunks and employing it in the transesterification reaction to generate biodiesel from waste cooking oil (WCO). Various operational factors were analyzed for their relative impact on biodiesel output, and after optimizing the reaction parameters, a conversion rate of 95.33% was achieved while maintaining a reaction period of 2.5 h, a methanol-to-oil molar ratio of 15:1, and a catalyst quantity of 5 wt%. Response surface methodology (RSM) and artificial neural network (ANN) models were implemented to improve and optimize these reaction parameters for the purpose of obtaining the maximum biodiesel output. Consequently, remarkably higher yields of 95.33% and 95.53% were achieved by RSM and ANN, respectively, with a quite little margin of error of 0.0003%. This study showcases immense promise for the large-scale commercial production of biodiesel.
更多
查看译文
关键词
biodiesel,plantain banana stem,sustainable development,waste management,artificial neural network,circular economy,response surface methodology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要