Nonlinearity Measurement of Si Transferring Photodetector in the Low Radiation Flux Range

Photonics(2023)

引用 0|浏览10
暂无评分
摘要
In order to establish a transferring chain from a photon flux of a single-photon source in quantum radiometry, the nonlinearity of the photodetector needs to be accurately measured. Using the flux superposition method, a nonlinearity measurement setup has been designed. The measurement setup consists of two tungsten halogen lamps, parent–child integrating spheres, an adjustable aperture, a diaphragm tube, and an optical filter. It has the advantage of low polarization error, low interference error, and low stray light effect. The Si photodiode to be measured is cooled to −40 °C to obtain a low noise level for low-flux radiation measurement. The nonlinearity of the Si photodetector is measured for photocurrent ranges from 10−12 A~10−6 A level, with a relative standard uncertainty from 0.0092~0.023%. The relative standard uncertainty of the nonlinearity correction factor ranged from 0.023~0.049%.
更多
查看译文
关键词
nonlinearity, flux superposition method, photodiode, quantum radiometry, correlated photon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要