谷歌浏览器插件
订阅小程序
在清言上使用

CNP-miR146a Decreases Inflammation in Murine Acute Infectious Lung Injury.

PHARMACEUTICS(2023)

引用 0|浏览9
暂无评分
摘要
Acute respiratory distress syndrome (ARDS) has approximately 40% in-hospital mortality, and treatment is limited to supportive care. Pneumonia is the underlying etiology in many cases with unrestrained inflammation central to the pathophysiology. We have previously shown that CNP-miR146a, a radical scavenging cerium oxide nanoparticle (CNP) conjugated to the anti-inflammatory microRNA(miR)-146a, reduces bleomycin- and endotoxin-induced acute lung injury (ALI) by decreasing inflammation. We therefore hypothesized that CNP-miR146a would decrease inflammation in murine infectious ALI. Mice were injured with intratracheal (IT) MRSA or saline followed by treatment with IT CNP-miR146a or saline control. Twenty-four hours post-infection, bronchoalveolar lavage fluid (BALF) and whole lungs were analyzed for various markers of inflammation. Compared to controls, MRSA infection significantly increased proinflammatory gene expression (IL-6, IL-8, TNFα, IL-1β; p < 0.05), BALF proinflammatory cytokines (IL-6, IL-8, TNFα, IL-1β; p < 0.01), and inflammatory cell infiltrate (p = 0.03). CNP-miR146a treatment significantly decreased proinflammatory gene expression (IL-6, IL-8, TNFα, IL-1β; p < 0.05), bronchoalveolar proinflammatory protein leak (IL-6, IL-8, TNFα; p < 0.05), and inflammatory infiltrate (p = 0.01). CNP-miR146a decreases inflammation and improves alveolar-capillary barrier integrity in the MRSA-infected lung and has significant promise as a potential therapeutic for ARDS.
更多
查看译文
关键词
bioactive nanoparticle therapeutic,infectious lung injury model,acute respiratory distress syndrome,cerium oxide nanoparticles (CNP),microRNA-146a (miR146a)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要