谷歌浏览器插件
订阅小程序
在清言上使用

Photosynthetic and Biochemical Responses of Four Subtropical Tree Seedlings to Reduced Dry Season and Increased Wet Season Precipitation and Variable N Deposition.

TREE PHYSIOLOGY(2024)

引用 0|浏览6
暂无评分
摘要
Interspecific variations in phenotypic plasticity of trees that are affected by climate change may alter the ecosystem function of forests. Seedlings of four common tree species (Castanopsis fissa, Michelia macclurei, Dalbergia odorifera and Ormosia pinnata) in subtropical plantations of southern China were grown in the field under rainout shelters and subjected to changing precipitation (48 L of water every 4 days in the dry season, 83 L of water every 1 day in the wet season; 4 g m-2 year-1 of nitrogen (N)), low N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 8 g m-2 year-1 N), high N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 10 g m-2 year-1 N) and their interactive effects. We found that the changes in seasonal precipitation reduced the light-saturated photosynthetic rate (Asat) for C. fissa due to declining area-based foliar N concentrations (Na). However, we also found that the interactive effects of changing precipitation and N deposition enhanced Asat for C. fissa by increasing foliar Na concentrations, suggesting that N deposition could alleviate N limitations associated with changing precipitation. Altered precipitation and high N deposition reduced Asat for D. odorifera by decreasing the maximum electron transport rate for RuBP regeneration (Jmax) and maximum rate of carboxylation of Rubisco (Vcmax). Ormosia pinnata under high N deposition exhibited increasing Asat due to higher stomatal conductance and Vcmax. The growth of D. odorifera might be inhibited by changes in seasonal precipitation and N deposition, while O. pinnata may benefit from increasing N deposition in future climates. Our study provides an important insight into the selection of tree species with high capacity to tolerate changing precipitation and N deposition in subtropical plantations.
更多
查看译文
关键词
Plant Growth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要