What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia .

Biology(2023)

引用 0|浏览7
暂无评分
摘要
is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by (ca. 9%), a non-rhizobial Alphaproteobacteria, and , a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating invasive success.
更多
查看译文
关键词
root nodules,microbiome,acacia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要