The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events

Genes(2023)

引用 0|浏览4
暂无评分
摘要
The chloroplast (cp) genome diversity has been used in phylogeny studies, breeding, and variety protection, and its expression has been shown to play a role in stress response. Smooth- and curly-leafed endives (Cichorium endivia var. latifolium and var. crispum) are of nutritional and economic importance and are the target of ever-changing breeding programmes. A reference cp genome sequence was assembled and annotated (cultivar 'Confiance'), which was 152,809 base pairs long, organized into the angiosperm-typical quadripartite structure, harboring two inverted repeats separated by the large- and short- single copy regions. The annotation included 136 genes, 90 protein-coding genes, 38 transfer, and 8 ribosomal RNAs and the sequence generated a distinct phyletic group within Asteraceae with the well-separated C. endivia and intybus species. SSR variants within the reference genome were mostly of tri-nucleotide type, and the cytosine to uracil (C/U) RNA editing recurred. The cp genome was nearly fully transcribed, hence sequence polymorphism was investigated by RNA-Seq of seven cultivars, and the SNP number was higher in smooth- than curly-leafed ones. All cultivars maintained C/U changes in identical positions, suggesting that RNA editing patterns were conserved; most cultivars shared SNPs of moderate impact on protein changes in the ndhD, ndhA, and psbF genes, suggesting that their variability may have a potential role in adaptive response. The cp transcriptome expression was investigated in leaves of plants affected by pre-harvest rainfall and rainfall excess plus waterlogging events characterized by production loss, compared to those of a cycle not affected by extreme rainfall. Overall, the analyses evidenced stress- and cultivar-specific responses, and further revealed that genes of the Cytochrome b6/f, and PSI-PSII systems were commonly affected and likely to be among major targets of extreme rain-related stress.
更多
查看译文
关键词
endive,cp genome sequence,DNA and RNA variants,cp transcriptome response,extreme rain stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要