Chrome Extension
WeChat Mini Program
Use on ChatGLM

Extraordinary physical properties of superconducting YBa$_{1.4}$Sr$_{0.6}$Cu$_3$O$_6$Se$_{0.51}$ in a multiphase ceramic material

V. Grinenko,A. Dudka, S. Nozaki, J. Kilcrease, A. Muto, J. Clarke, T. Hogan,V. Nikoghosyan, I. de Paiva,R. Dulal,S. Teknowijoyo, S. Chahid,A. Gulian

arXiv (Cornell University)(2023)

Cited 0|Views3
No score
Abstract
We report on a novel material obtained by modifying pristine YBCO superconductor in solid phase synthesis via simultaneous partial substitution of Ba by Sr and O by Se. Simultaneous application of EDX and EBSD confirmed that Se atoms indeed enter the crystalline lattice cell. The detailed XRD analysis further confirmed this conclusion and revealed that the obtained polycrystalline material contains 5 phases, with the major phase ($>$30\%) being a cuprate YBa$_{1.4}$Sr$_{0.6}$Cu$_{3}$O$_{6}$Se$% _{0.51}$. The obtained superconductor demonstrates unique properties, including i) two superconducting transitions with $T_{c1}\approx$ 35 K (granular surface phase) and $T_{c2}\approx$ 13 K (bulk granular phase) - this granular phase arrangement naturally yields the Wohlleben effect; ii) reentrant diamagnetism and resistive state; iii) strong paramagnetism with Curie-Weiss behavior (% $\theta_{CW} \approx$ 4 K) and the ferromagnetic phase overruled by superconductivity; iv) Schottky anomaly visible in the heat capacity data and most likely delivered by small clusters of magnetic moments. Thorough analysis of the heat capacity data reveals a strong-coupling $d-$wave pairing in its bulk phase (with $2\Delta /T_{c}\approx 5$), and, most importantly, a very unusual anomaly in this cuprate. There are reasons to associate this anomaly with the quantum criticality observed in traditional cuprate superconductors at much higher fields (achievable only in certain laboratories). In our case, the fields leading to quantum criticality are much weaker ($\sim $7-9 T) thus opening avenues for exploration of the interplay between superconductivity and pair density waves by the wider research community.
More
Translated text
Key words
extraordinary physical properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined