DYRK2 promotes chemosensitivity via p53-mediated apoptosis after DNA damage in colorectal cancer.

Cancer science(2023)

引用 0|浏览2
暂无评分
摘要
Dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a protein kinase that phosphorylates p53-Ser46 and induces apoptosis in response to DNA damage. However, the relationship between DYRK2 expression and chemosensitivity after DNA damage in colorectal cancer has not been well investigated. The aim of the present study was to examine whether DYRK2 could be a novel marker for predicting chemosensitivity after 5-fluorouracil- and oxaliplatin-induced DNA damage in colorectal cancer. Here we showed that DYRK2 knockout decreased the chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer cells, whereas the chemosensitivity remained unchanged in p53-deficient/mutated colorectal cancer cells. In addition, no significant differences in chemosensitivity to 5-fluorouracil and oxaliplatin between scramble and siDYRK2 p53(-/-) colorectal cancer cells were observed. Conversely, the combination of adenovirus-mediated overexpression of DYRK2 with 5-fluorouracil or oxaliplatin enhanced apoptosis and chemosensitivity through p53-Ser46 phosphorylation in p53 wild-type colorectal cancer cells. Furthermore, DYRK2 knockout decreased chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type xenograft mouse models. Taken together, these findings demonstrated that DYRK2 expression was associated with chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer, suggesting the importance of evaluating the p53 status and DYRK2 expression as a novel marker in therapeutic strategies for colorectal cancer.
更多
查看译文
关键词
colorectal cancer,apoptosis,p53‐mediated,chemosensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要